top of page

Solution of the Regularity of the Navier-Stokes Equations

This work presents an innovative probabilistic approach to solving the regularity problem of incompressible Navier-Stokes equations in 3D, by reformulating fluid dynamics via a multi-scale state function P(t). The modeling relies on P(t) = A ψ(S, R, V, D[D_cond, D_act], C, T, M) ⋅ [O(t) ⋅ D(t)], integrating multi-scale interactions, instabilities, and energy dissipation, with a dynamic memory M to stabilize turbulence. Analytical derivations prove equivalence to the Navier-Stokes equations and establish global bounds for solution regularity, validated by theoretical analyses and numerical simulations.



 
 
 

Comments


Crowd Consciousness is a website dedicated to research on crowd behavior and dynamics. A formula for universality (innovation

Join us
Explore crowdconsciousnes.com, download our free resources, and follow or contact us.

Together, let's decipher the forces that drive our world.

© 2025 LWJS All rights reserved. Protected by e-Soleau no. DS02025007420.

© 2035 by LWJS - Grail. Powered and secured by Wix

bottom of page